



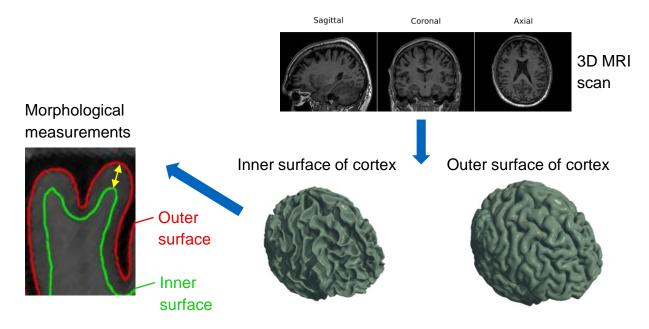
# Vox2Cortex: Fast Explicit Reconstruction of Cortical Surfaces from 3D MRI Scans with Geometric Deep Neural Networks



Fabian BongratzAnne-Marie Rickmann

Sebastian Pölsterl

Christian Wachinger

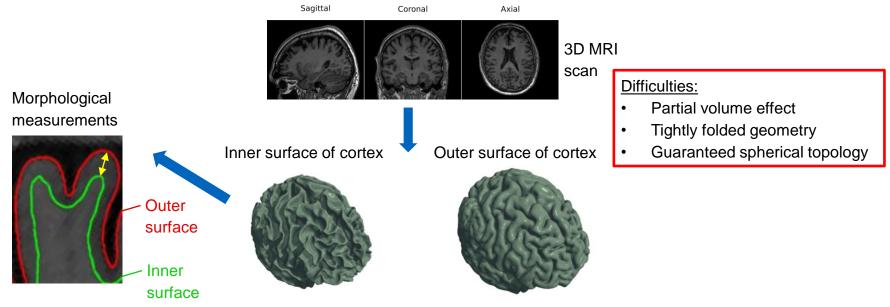

Lab for Artificial Intelligence in Medical Imaging Technical University of Munich Ludwig-Maximilians-University Munich





# **Cortical Surface Reconstruction**

#### Extract inner and outer boundary surfaces of the cortex from the MRI scan

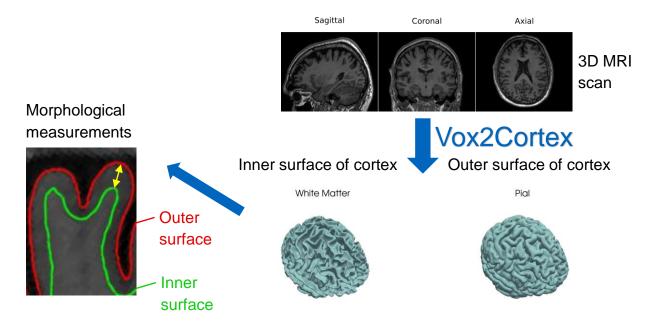






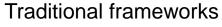

# **Cortical Surface Reconstruction**

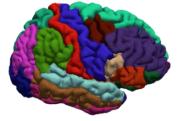
#### Extract inner and outer boundary surfaces of the cortex from the MRI scan

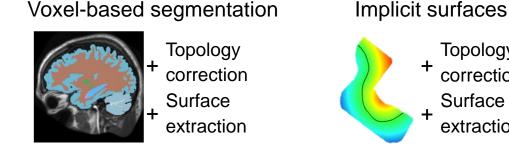


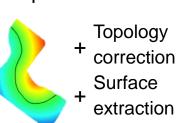






# **Cortical Surface Reconstruction**


#### Extract inner and outer boundary surfaces of the cortex from the MRI scan













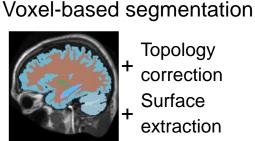

FreeSurfer [1]

Any segmentation method, e.g., nnUNet [2]

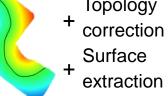
DeepCSR [3]

B. Fischl. "FreeSurfer". In: Neuroimage 62.2 (2012), pp. 774–781


[2] F. Isensee, P. F. Jaeger, S. A. A. Kohl, J. Petersen, and K. Maier-Hein. "nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation." In: Nature methods (2020)


[3] R. S. Cruz, L. Lebrat, P. Bourgeat, C. Fookes, J. Fripp, and O. Salvado. "DeepCSR: A 3D Deep Learning Approach for Cortical Surface Reconstruction". In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV) (2021)






#### Traditional frameworks

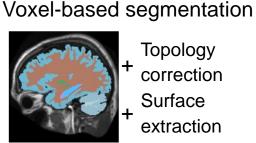




Topology correction Surface extraction Implicit surfaces Topology

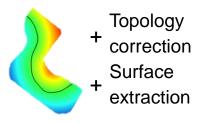



>4h per scan









#### Traditional frameworks





Topology correction Surface

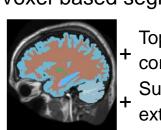

Implicit surfaces



#### >4h per scan

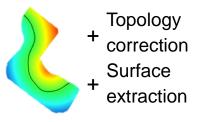



### Staircase artifacts





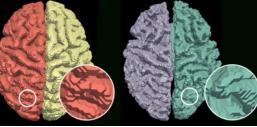




#### Traditional frameworks





Voxel-based segmentation


Topology correction Surface extraction Implicit surfaces



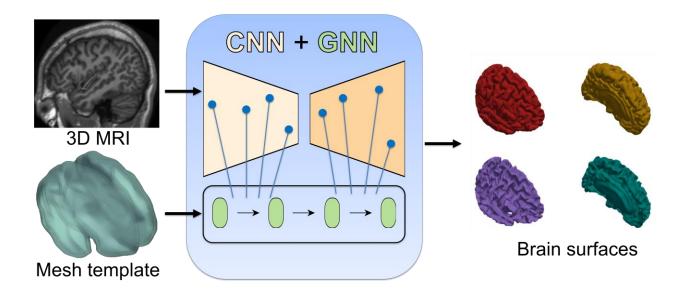
>4h per scan



#### Staircase artifacts



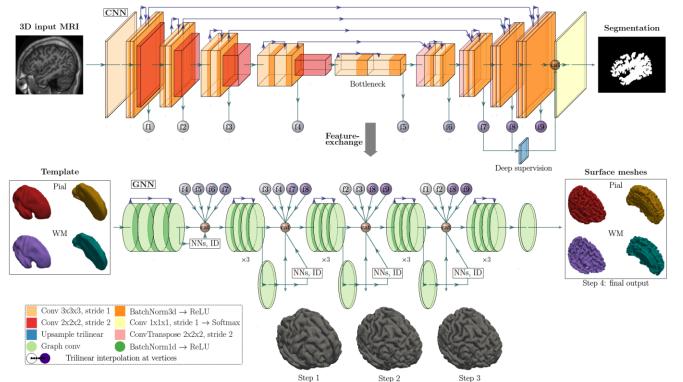
## **Geometric errors**








## Vox2Cortex Architecture


#### Deform a brain template based on features extracted from the input image







## Vox2Cortex Architecture







# Loss Function

$$\mathcal{L}(y^{p}, y^{gt}) = \mathcal{L}_{vox}(y^{p}, y^{gt}) + \mathcal{L}_{mesh}(y^{p}, y^{gt})$$

 $\mathcal{Y}^{p}$ : Predicted mesh & binary segmentation  $\mathcal{Y}^{gt}$ : Ground-truth mesh & binary segmentation





# Loss Function

$$\mathcal{L}(y^{p}, y^{gt}) = \mathcal{L}_{vox}(y^{p}, y^{gt}) + \mathcal{L}_{mesh}(y^{p}, y^{gt})$$
$$\mathcal{L}_{vox}(y^{p}, y^{gt}) = \sum_{l=1}^{L} \mathcal{L}_{BCE}(B_{l}^{p}, B^{gt})$$

 $\mathcal{Y}^{\mathrm{p}}$ : Predicted mesh & binary segmentation  $\mathcal{Y}^{\mathrm{gt}}$ : Ground-truth mesh & binary segmentation





# Loss Function

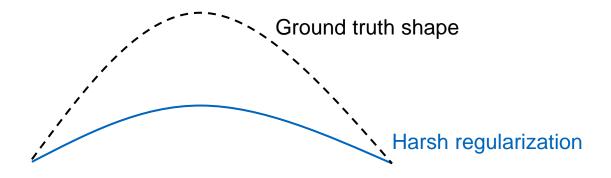
$$\mathcal{L}(y^{p}, y^{gt}) = \mathcal{L}_{vox}(y^{p}, y^{gt}) + \mathcal{L}_{mesh}(y^{p}, y^{gt})$$

$$\mathcal{L}_{vox}(y^{p}, y^{gt}) = \sum_{l=1}^{L} \mathcal{L}_{BCE}(B_{l}^{p}, B^{gt})$$

$$\mathcal{L}_{mesh}(y^{p}, y^{gt}) = \mathcal{L}_{mesh, cons}(y^{p}, y^{gt}) + \mathcal{L}_{mesh, reg}(y^{p})$$

$$\mathcal{Y}^{p}: \text{Predicted mesh \& binary segmentation}$$

$$L_{mesh}(y^{p}, y^{gt}) = \mathcal{L}_{mesh, cons}(y^{p}, y^{gt}) + \mathcal{L}_{mesh, reg}(y^{p})$$

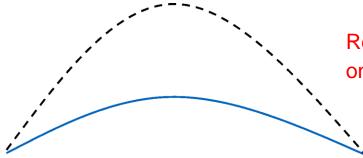

 $\mathcal{Y}^{gt}$ : Ground-truth mesh & binary segmentation





# Curvature-Weighted Chamfer Loss

Weight point loss locally to thwart regularizers in densely folded regions



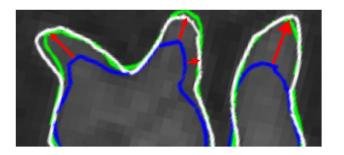





# Curvature-Weighted Chamfer Loss

Weight point loss locally to thwart regularizers in densely folded regions




Regularization reweighted based on ground-truth curvature





# **Curvature-Weighted Chamfer Loss**

Weight point loss locally to thwart regularizers where necessary



Blue: standard Chamfer Green: curvature-weighted Chamfer White: FreeSurfer [1]

[1] B. Fischl. "FreeSurfer". In: Neuroimage 62.2 (2012), pp. 774–781





# **Quantitative Results: Surface Accuracy**

ASSD: average symmetric surface distance HD: 90-percentile Hausdorff distance WM: white matter

|       |                   | Left WM Surface   |                     | Right WM Surface  |                                | Left Pial Surface |                            | Right Pial Surface |                     |
|-------|-------------------|-------------------|---------------------|-------------------|--------------------------------|-------------------|----------------------------|--------------------|---------------------|
| Data  | Method            | ASSD (mm)         | HD (mm)             | ASSD (mm)         | HD (mm)                        | ASSD (mm)         | HD (mm)                    | ASSD (mm)          | HD (mm)             |
| ADNI  | Vox2Cortex        | $0.345 \pm 0.056$ | <b>0.720</b> ±0.125 | $0.347 \pm 0.046$ | $\boldsymbol{0.720} \pm 0.087$ | 0.327 ±0.031      | 0.755 ±0.102               | 0.318 ±0.029       | $0.781 \pm 0.102$   |
|       | DeepCSR[1]        | $0.422 \pm 0.058$ | $0.852 \pm 0.134$   | $0.420 \pm 0.058$ | $0.880 \pm 0.156$              | $0.454 \pm 0.059$ | $0.927 \pm 0.243$          | $0.422 \pm 0.053$  | $0.890 \pm 0.197$   |
|       | nnUNet <b>[2]</b> | 1.176 ±0.345      | 1.801 ±2.835        | $1.159 \pm 0.242$ | 1.739 ±1.880                   | $1.310 \pm 0.292$ | 3.152 ±2.374               | $1.317 \pm 0.312$  | 3.295 ±2.387        |
| OASIS | Vox2Cortex        | $0.315 \pm 0.039$ | <b>0.680</b> ±0.137 | $0.318 \pm 0.048$ | $0.682 \pm 0.151$              | $0.362 \pm 0.036$ | $\textbf{0.894} \pm 0.141$ | $0.373 \pm 0.041$  | <b>0.916</b> ±0.137 |
|       | DeepCSR[1]        | $0.360 \pm 0.042$ | $0.731 \pm 0.104$   | $0.335 \pm 0.050$ | <b>0.670</b> ±0.195            | $0.458 \pm 0.056$ | $1.044 \pm 0.290$          | $0.442 \pm 0.058$  | $1.037 \pm 0.294$   |

[1] R. S. Cruz, L. Lebrat, P. Bourgeat, C. Fookes, J. Fripp, and O. Salvado. "DeepCSR: A 3D Deep Learning Approach for Cortical Surface Reconstruction". In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV) (2021)

[2] F. Isensee, P. F. Jaeger, S. A. A. Kohl, J. Petersen, and K. Maier-Hein. "nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation." In: Nature methods (2020)

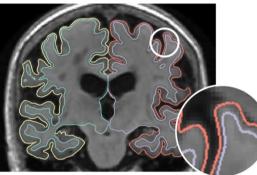




# **Quantitative Results: Inference Time**

| Method                                                                   | Inference time |                                |  |  |
|--------------------------------------------------------------------------|----------------|--------------------------------|--|--|
| Vox2Cortex (ours)<br>Vox2Cortex* (ours)<br>DeepCSR [2]<br>FreeSurfer [1] |                | 18.0s<br>2.1s<br>445.7s<br>>4h |  |  |

\*~42,000 instead of 168,000 vertices per surface


[1] B. Fischl. "FreeSurfer". In: Neuroimage 62.2 (2012), pp. 774–781

[2] F. Isensee, P. F. Jaeger, S. A. A. Kohl, J. Petersen, and K. Maier-Hein. "nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation." In: Nature methods (2020)





## Vox2Cortex



outer surfaces

inner surfaces



Visit our project page

Contact

Fabian Bongratz

fabi.bongratz@tum.de

www.ai-med.de



https://ai-med.github.io/Vox2Cortex/